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multivariate splines and finite
element methods
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Abstract

We compare a recently proposed multivariate spline based on mixed partial derivatives with two other standard splines

for the scattered data smoothing problem. The splines are defined as the minimiser of a penalised least squares

functional. The penalties are based on partial differential operators, and are integrated using the finite element

method. We compare three methods to two problems: to remove the mixture of Gaussian and impulsive noise

from an image, and to recover a continuous function from a set of noisy observations.
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Introduction

We begin by outlining the scattered data problem.
Consider the set of scattered points G ¼ pif gNi¼1

in a
domain X � Rd with d 2 N, and the set of noisy obser-
vations at those points zif gNi¼1

. We want to reconstruct
an unknown function u to approximate the given data.
Assuming that the underlying data set is corrupted with
Gaussian noise, we can assume that the unknown func-
tion u satisfies

zi ¼ uðpiÞ þ ni

i ¼ 1; . . .N, where nif gNi¼1
is a set of normally

distributed random variables with mean 0 and
variance r2.

To recover the unknown function u, we will use an
approach based on the multivariate L-spline. That is,
we will search for a function u that minimises the fol-
lowing least squares functional

XN
i¼1

ðzi � uðpiÞÞ
2 þ k

Z
X
ðLuðx; yÞÞ2dx

over a Sobolev space V, where L is a partial differential
operator, and k is a positive smoothing parameter.

We use the standard notation for Sobolev spaces on
X.1–3 We consider three different choices for L. The
first choice is to take Lu as the gradient of u. Then
we need to have V ¼ H1ðXÞ. However, the continuous
problem is not well-posed with this choice for d � 2,
because the point value of a function is not defined in
H1ðXÞ when d � 2. The second choice is to choose Lu
as the Laplacian of u. Then we need to have
V ¼ H2ðXÞ. Again, the continuous problem is not
well-posed for d> 3, because the point value of a func-
tion is not defined in H2ðXÞ when d> 3. The third
choice is to include mixed partial derivatives of u on
the gradient penalty to construct Lu.4 Unlike the other
two choices, the resulting spline is well defined for any
dimension d 2 N.
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This is the first time that computational results of

the newly proposed multivariate spline4 are presented

and compared with other existing techniques.

Moreover, we observe the instability of the gradient

penalty approach in our numerical experiments,

which is another novelty of this contribution.
We will apply these methods to two problems. The

first problem is to recover an image that have been

corrupted with both Gaussian and impulsive noise.

We apply a finite element method to compute the solu-

tion of the above minimisation problem. Finite element

methods have recently become popular in different

areas of image processing.5–9 Finite element methods

are applied in Lamichhane10 and Lamichhane11 to

remove the mixture of Gaussian and impulsive noise

using the gradient penalty and total variation penalty,

respectively.
The second problem is to recover a continuous func-

tion from a set of noisy observations. We consider

observations that have been corrupted with Gaussian

noise. In this example, we see spurious spikes in the

solution using the gradient penalty. This is due to the

fact that the gradient penalty does not control

the point-wise values of the function. Numerical

results show that we can increase the mesh-size to

reduce the height of the spikes but they cannot be

totally removed.
This paper is organised as follows. In the next sec-

tion, we present the gradient penalty smoothing

technique. In the third section, we present the

smoothing technique based on the minimisation of a

functional involving mixed partial derivatives. In the

fourth section, we compare the three finite element

methods in denoising images and recovering

continuous functions. We discuss these results in the

last section.

Multivariate spline with gradient penalty

The multivariate spline with the gradient penalty is

given by the following minimisation problem

min
u2V

XN
i¼1

ðuðpiÞ � ziÞ2 þ k
Z
X
kruk2dx

 !
(1)

Due to the choice of the minimisation functional it is

natural to take V ¼ H1ðXÞ, for which the problem will

not be well-posed when d> 1.
Now we consider a finite element discretisation of

the spline. Let C0ðXÞ be the space of continuous func-

tions in X and T h a finite element triangulation of X.
Note that T h is the set of triangles or rectangles.

Then let

Vh ¼ fuh 2 C0ðXÞj uhjT 2 PðTÞ; T 2 T hg (2)

be a finite element space, where P(T) is the linear poly-
nomial space if T is a triangle, and P(T) is the bilinear
polynomial space on T if T is a rectangle.12 The mini-
misation problem leads to the variational problem of
finding uh 2 Vh such that

aðuh; vhÞ ¼ ‘ðvhÞ; vh 2 Vh

where the bilinear form að�; �Þ and the linear form ‘ð�Þ
are given by

aðu; vÞ ¼
XN
i¼1

uðpiÞvðpiÞ þ k
Z
X
ru � rvdx

‘ðvÞ ¼
XN
i¼1

vðpiÞzi

It is easy to show that the above problem has a
unique solution under the assumption that the set of
scattered points G is non-empty.10

Since að�; �Þ is positive definite, we can define the
energy k � ka on V as

kvk2a ¼ aðv; vÞ

for all v 2 V
The following lemma shows that the discrete multi-

variate spline with the gradient penalty is well-posed
for d¼ 1 but not well-posed for d> 1. The point-
value of a function is not controlled by the gradient
of the function when d> 1. The well-posedness is
exhibited in the stability result first proved in Garcke
and Hegland.13 For completeness we have given these
results in Lemmas 1, 2 and 3, which are taken from
Garcke and Hegland.13

Lemma 1. (Discrete Sobolev inequality). There exists
constant cd > 0 such that for all u 2 Vh

1. uðxÞj j � cdkukH1ðXÞ for d¼ 1.

2. uðxÞj j � cd 1þ loghj jð ÞkukH1ðXÞ for d¼ 2.

3. uðxÞj j � cdh
1�d=2kukH1ðXÞ for d> 2.

The constant cd is independent of the mesh-size h but
depends on d. These bounds are tight, and for d> 2 we
have that

cd �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3dþ 1
p 3

2

� �d=2
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Lemma 2. (Discrete Poincar�e inequality). Let
ðx0; y0Þ 2 X and u0 ¼ uðx0; y0Þ for u 2 Vh. Then there
exist constants cd > 0 such that

1. ku� u0kL2ðXÞ � cdkrukL2ðXÞ for d¼ 1

2. ku� u0kL2ðXÞ � cd 1þ loghj jð ÞkrukL2ðXÞ for d¼ 2

3. ku� u0kL2ðXÞ � cdh
1�d=2krukL2ðXÞ for d> 2.

Lemma 3. (Discrete V-ellipticity). There exist con-
stants cd and Cd such that the energy norm on Vh satisfies

ad;hkukH1ðXÞ � kuka � bd;hkukH1ðXÞ

for all u 2 Vh, where ad;h and bd;h are given by

1. ad;h ¼ cdffiffi
k

p þ 1ffiffi
k

p þ 1
� ��1

and bd;h ¼ Cd þ
ffiffiffi
k

p
for d¼ 1

2. ad;h ¼ cd 1þ loghj jð Þffiffi
k

p þ 1ffiffi
k

p þ 1
� ��1

and

bd;h ¼ Cd 1þ loghj jð Þ þ
ffiffiffi
k

p
for d¼ 2

3. ad;h ¼ cdk
�1=2h1�d=2 þ k�1=2 þ 1

� ��1
and

bd;h ¼ Cdh
1�d=2 þ

ffiffiffi
k

p
for d> 2.

The above results imply that for the solution uh 2 Vh

of the spline with the gradient penalty we have

kuhka �
bd;h
ad;h

k‘kL2ðXÞ

where k‘kL2ðXÞ is the L2-norm of the linear
functional ‘.

Remark 4. We can see that the ill-posedness is exhib-
ited in the stability constant being not independent of the
mesh-size h. There is no easy way to remove this
dependency.

Multivariate spline with Laplacian penalty

The multivariate spline with the Laplacian penalty is
the solution of the following minimisation problem

min
u2V

XN
i¼1

ðuðpiÞ � ziÞ2 þ k
Z
X
ðDuÞ2dx

 !
(3)

where V ¼ H2ðXÞ. The minimisation problem is well-
posed for d 2 f1; 2; 3g since H2ðXÞ � C0ðXÞ when
d 2 f1; 2; 3g. More details of this spline can be found
in Ramsay.14 This spline will be called Laplacian spline
in the following.

Remark 5. The Laplacian penalty imposes higher
smoothness in the solution. Since we look for a solution,
whose second derivatives are square integrable, point-
values of the solution are well-defined in contrast to the

gradient penalty spline. However, a finite element

approximation of the Laplacian spline is more expensive

than the gradient penalty spline.
While we can use a direct finite element approxima-

tion using a low order finite element space Vh to

approximate the gradient penalty spline, we cannot

directly use this space to approximate the Laplacian

spline as Duh for uh 2 Vh is not well-defined. We use

a mixed finite element method proposed by

Lamichhane.15 We first introduce a new variable / ¼
Du in the minimisation formulation (3) and then write a

weak equation as

Z
X
/ldx ¼

Z
X
ru � rl dx; l 2 H1ðXÞ (4)

Now choosing / 2 L2ðXÞ and u; l 2 H1ðXÞ, we have
a well-defined formulation for which we can use the

space Vh to discretise u and l, whereas we use a dis-

continuous piecewise polynomial space Wh to discretise

/. The basis functions of Wh and Vh satisfy a biortho-

gonality relationship15 so that the associated matrix

corresponding to the L2-inner product
R
X/l dx in (4)

is diagonal. In this way, we arrive at a very efficient

finite element method to approximate the solution of

the minimisation problem (3). The discrete problem is

then to compute

min
½uh;/h�2Vh	Wh

XN
i¼1

ðuhðpiÞ � ziÞ2 þ k
Z
X
/2
hdx

 !

subject to the constraint

Z
X
/h lh dx ¼

Z
X
ruh � rlh dx; lh 2 Vh

Since C0ðXÞ 6� H1ðXÞ when d> 1, the gradient pen-

alty spline formulation does not provide a well-posed

problem. The problem is well-posed only in one dimen-

sion. Similarly, C0ðXÞ � H2ðXÞ for d 2 f1; 2; 3g but

C0ðXÞ 6� H2ðXÞ when d> 3. This motivates us to find

a well-posed spline formulation for any d 2 N, which is

given in the next section.

New multivariate spline with mixed

derivative penalty

In order to define the new multivariate spline, we define

the associated Sobolev space. Let B ¼ f0; 1gdnf0g,
where 0 2 Rd is a zero vector. We use a standard

multi-index notation with a ¼ ða1; � � � ; adÞ 2 B so that

Harris et al. 3



a mixed derivative of a sufficiently smooth function u is
denoted by

Dau ¼ @

Xd

i¼1
aiu

@xa11 � � � @xadd
where we use the usual Cartesian coordinate system
with x ¼ ðx1; � � � ; xdÞ 2 Rd.

We now define our Sobolev space for the multivar-
iate spline problem as

H1
mðXÞ :¼ u 2 L2ðXÞ : Dau 2 L2ðXÞ; a 2 B

	 

which is equipped with the norm

jjujjH1
mðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjujj2L2ðXÞ þ

X
a2B

jjDaujj2L2ðXÞ

r

and the semi-norm

jujH1
mðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
a2B

jjDaujj2L2ðXÞ

r

The semi-norm for d¼ 2 is simply

jvjH1
mðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
X
krvk2 þ @2v

@x@y

� �2

dx

s

where jjrvjj2 is the Euclidean norm of the vector
rv 2 R2.

We note that the spaceH1
mðXÞ is a Hilbert space, and

H1
mðXÞ � C0ðXÞ.16 The new multivariate spline is then

obtained as a solution of the minimisation problem

min
u2H1

mðXÞ

XN
i¼1

ðuðpiÞ � ziÞ2 þ kjuj2H1
mðXÞ

 !
(5)

The associated inner-product for the semi-norm on
H1

m-space for d¼ 2 is

hu; viH1
mðXÞ ¼

Z
X
ruTrvþ @2u

@x@y

@2v

@x@y
dx

We can define a bilinear form bð�; �Þ and a linear
form ‘ð�Þ as

bðu; vÞ ¼ ðPuÞTðPvÞ þ khu; viH1
mðXÞ

‘ðvÞ ¼ ðPvÞTz

where

Pu ¼ ðuðx1; y1Þ; uðx2; y2Þ; . . . ; uðxN; yNÞÞT

is a column vector of the function values of u at the

scattered points G ¼ pif gNi¼1
, and z 2 RN is a column

vector with ith component zi. Then the multivariate

spline problem is to find u 2 V such that

bðu; vÞ ¼ ‘ðvÞ (6)

for all v 2 V.
Let X be a rectangle in R2 and T h the tensor prod-

uct partition of the domain with mesh size h, such that
each element T 2 T h is a rectangle. Then we define a

finite element space Vh as

Vh ¼ uh 2 C0ðXÞ : uhjT 2 PðTÞ;T 2 T h

	 

;

where PðTÞ is the space of bilinear polynomials on T.

We can now write our discrete multivariate spline prob-

lem as

min
uh2Vh

XN
i¼1

ðuhðpiÞ � ziÞ2 þ kjuhj2H1
mðXÞ

 !
:

That is, the discrete problem is to find uh 2 Vh such

that

bðuh; vhÞ ¼ ‘ðvhÞ (7)

for all vh 2 Vh.
The discrete problem is shown to be well-posed in

Lamichhane.11 Here we recall some of the important

results. We first show that the bilinear form bð�; �Þ is

positive definite on Vh.
Lemma 6. Let k > 0 and let the set of scattered points

G be non-empty. Then the bilinear form bð�; �Þ is positive
definite on the vector space Vh.

Proof. If uh¼ 0, then clearly bðuh; uhÞ ¼ 0.
Conversely, let bðuh; uhÞ ¼ 0. Then

Puh ¼ 0; ruh ¼ 0; and
@2uh
@x@y

¼ 0:

Since uh is a continuous function, ruh ¼ 0 gives that

u is a constant function in X. Further, since G is non-
empty and Puh¼ 0, we have that uh¼ 0.

Since bð�; �Þ is positive definite, we can define the

energy norm k � kb on Vh as

kvhk2b ¼ bðvh; vhÞ

for all vh 2 Vh. Since bð�; �Þ and ‘ð�Þ satisfy the condi-
tions of the Lax-Milgram lemma,2,3 the unique mini-

miser is the solution of the discrete problem (7). In

addition, the following holds.

4 Journal of Algorithms & Computational Technology



Lemma 7. Let k > 0 and let G be non-empty. Then the

discrete problem (7) admits a unique solution which

depends continuously on the data with respect to the

energy norm k � kb.
Proof. We have that

bðuh; vhÞj j � kuhkbkvhkb; and
‘ðvhÞj j � kzkkvhkb

for all uh; vh 2 Vh. Hence bð�; �Þ and ‘ð�Þ are contin-

uous on Vh. We also have that

bðuh; uhÞ ¼ kuhk2b

for all uh 2 Vh. Hence bð�; �Þ is coercive on Vh. By the

Lax-Milgram lemma,2,3 there exists a unique solution

uh of the discrete problem 7. Additionally, the solution

depends continuously on the data z.
In addition, a direct application of the C�ea lemma

provides an optimal a priori estimate of the discrete

solution.
Lemma 8. Let u be the solution to the continuous

problem (6), and let uh be the solution to the discrete

problem (7). Then

ku� uhkb � inf
vh2Vh

ku� vhkb

Each finite element basis function is associated with

a point in the tensor product partition T h. Assuming

there are mn points, we have mn basis functions. Let

/if gmn
i¼1 be the set of finite element basis functions,

which span Vh. Then we can write our solution uh 2
Vh as a linear combination of these basis functions,

namely

uhðx; yÞ ¼
Xmn

i¼1

ui/iðx; yÞ

Let u ¼ ðu1; u2; . . . ; umnÞT and let K be the finite ele-

ment stiffness matrix, where Kij ¼
R
XruThrvhdx. Let M

be a mixed partial derivative matrix, where

Mij ¼
R
X

@uh
@x@y

@vh
@x@y dx. Then the finite element problem

leads to the linear system

ðATAþ kðKþMÞÞu ¼ ATz

where A is a matrix of size N	mn, with entries

Aij ¼ /jðpiÞ.

Computation of K and M

We will use a reference element to construct the matri-

ces K and M. For rectangles, we choose our reference

element T̂ to be the square with vertices

ð0; 0Þ; ð1; 0Þ; ð1; 1Þ; and (0, 1). We then construct local

basis functions at these vertices. These are

/̂1ðn; gÞ ¼ ð1� nÞð1� gÞ;
/̂2ðn; gÞ ¼ nð1� gÞ;
/̂3ðn; gÞ ¼ ng;

/̂4ðn; gÞ ¼ ð1� nÞg

Now consider the rectangular element T with verti-

ces ðx1; y1Þ; ðx2; y1Þ; ðx2; y2Þ; and (x1, y2). We construct

global basis functions at these vertices. When restricted

to the element, these are given by

/1ðx; yÞ ¼
ðy� y2Þðx� x2Þ
ðy1 � y2Þðx1 � x2Þ

;

/2ðx; yÞ ¼
ðy� y2Þðx� x1Þ
ðy1 � y2Þðx2 � x1Þ

;

/3ðx; yÞ ¼
ðy� y1Þðx� x1Þ
ðy2 � y1Þðx2 � x1Þ

;

/4ðx; yÞ ¼
ðy� y1Þðx� x2Þ
ðy2 � y1Þðx1 � x2Þ

Let FT : T̂ ! T be the bijective map from the refer-

ence element to T. This mapping is given by

x
y

� �
¼ x2 � x1 0

0 y2 � y1

� �
n
g

� �
þ x1

y1

� �

Let the matrix in this transformation be denoted BT.

We note that /i ¼ /̂i oF
�1
T .

We will use the chain rule to calculate the deriva-

tives. We have

@/i

@x
¼ 1

b1
� @/i

@n
¼ 1

b1
� @/̂i

@n
oF�1

T ;

@/i

@y
¼ 1

b2
� @/i

@g
¼ 1

b2
� @/̂i

@g
oF�1

T

where b1 ¼ x2 � x1 and b2 ¼ y2 � y1.
Applying the chain rule again we obtain

@2/i

@x@y
¼ 1

b1b2
� @

2/i

@n@g
¼ 1

b1b2
� @

2/̂i

@n@g
oF�1

T

Now, we’ll calculate K. Let KT 2 R4	4 be the local

stiffness matrix associated with the element T. Then

ðKTÞij ¼
Z
T

@/i

@x
�
@/j

@x
þ @/i

@y
�
@/j

@y
dx

Harris et al. 5



Now

Similarly

Z
T

@/i

@y
�
@/j

@y
dx ¼ x2 � x1

y2 � y1

Z
T̂

@/̂i

@g
�
@/̂j

@g
dx̂

Hence we have

KT ¼ y2 � y1
6ðx2 � x1Þ

2 �2 �1 1

�2 2 1 �1

�1 1 2 �2

1 �1 �2 2

2
66664

3
77775

þ x2 � x1
6ðy2 � y1Þ

2 1 �1 �2

1 2 �2 �1

�1 �2 2 1

�2 �1 1 2

2
66664

3
77775

We then assemble each KT into the global stiffness
matrix, by relating the local nodal numbering to
the global numbering. Let the global numbering of the
vertices of T be i; j; k; ‘. Then the local matrix KT will be
stored in the submatrix K½i; j; k; ‘� of the global matrix
K. (Note here that the submatrix is formed by keeping
the ith, jth, kth and ‘th rows and columns of the matrix
K.) The global matrix is obtained by adding all the con-
tributions from the local matrices.

We now calculate the mixed partial derivative
matrix M. Let MT 2 R4	4 be the local matrix associ-
ated with the element T. Then

ðMTÞij ¼
Z
T

@2/i

@x@y
�
@2/j

@x@y
dx

¼
Z
T̂

@2/i

@x@y
oFT

 !
�

@2/j

@x@y
oFT

 !
jdetBTjdx̂

¼ jdetBTj
ðb1b2Þ2

Z
T̂
@2/̂i

@n@g
�
@2/̂j

@n@g
dx̂

¼ 1

ðx2 � x1Þðy2 � y1Þ

Z
T̂

@2/̂i

@n@g
�
@2/̂j

@n@g
dx̂

¼ 1

ðx2 � x1Þðy2 � y1Þ
@2/̂i

@n@g
�
@2/̂j

@n@g

Z
T̂

dx̂

¼ 1

ðx2 � x1Þðy2 � y1Þ
@2/̂i

@n@g
�
@2/̂j

@n@g

Hence we have

MT ¼ 1

ðx2 � x1Þðy2 � y1Þ

1 �1 1 �1
�1 1 �1 1
1 �1 1 �1
�1 1 �1 1

2
664

3
775

We then assemble each MT into the global matrix M

in the same way that the stiffness matrix was

assembled.

Numerical results

Real life images

We would like to recover some real life images. Consider

an image of size m	 n. Then we define a tensor product

partition T h of the square ½0; 1� 	 ½0; 1� using the collec-

tion of points N h ¼ ðai; bjÞ
	 
n;m

i¼1;j¼1
; where ai ¼ i�1

n�1,

and bj ¼ j�1
m�1. Then each pixel of the image is associated

with a grid point in N h.
Since we know the images before they have noise

applied to them, we will use peak signal-to-noise ratio

(PSNR) to compare the results. Let the original image

be given by I, and the recovered image be given by Î.

Then the PSNR is given by

PSNR ¼ 10log10
MAX2

I

MSE

� �
¼ 20log10

MAXIffiffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

where MAXI is the maximum pixel value of the image,

and MSE is the mean square error. We note that MSE

is given by

MSE ¼ 1

mn

Xm
i¼1

Xn
j¼1

kIij � Îijk2:

We now consider two test images. These images are

the Lena image and Baboon image (see Figure 1). We

will apply both Gaussian and impulsive noise to these

images. The Gaussian noise has zero mean and varian-

ces 0.05 and 0.1, and the salt and pepper noise has

densities from 30% through to 80%.
We will now use the three different splines to recon-

struct the images. As an example, we will first consider

Z
T

@/i

@x
�
@/j

@x
dx ¼

Z
T̂

@/i

@x
oFT

� �
@/j

@x
oFT

� �
jdetBTjdx̂ ¼ jdetBTj

b21

Z
T̂

@/̂i

@n
�
@/̂j

@n
dx̂ ¼ y2 � y1

x2 � x1

Z
T̂

@/̂i

@n
�
@/̂j

@n
dx̂
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Figure 3. Noisy Baboon image (r2 ¼ 0:05, 60% salt and pepper noise density) (a), recovered image using gradient penalty spline
(b), recovered image using mixed derivative spline (c), recovered image using Laplacian spline (d).

Table 1. Lena image PSNR for Gaussian (variance 0.05) and
different impulsive noise densities.

Lena image PSNR

Noise density

30% 40% 50% 60% 70% 80%

Grad. 22.13 22.01 22.22 21.90 21.42 20.91

Mixed 22.29 22.28 22.42 21.93 21.59 20.80

Biharm. 22.98 22.95 22.30 22.09 21.74 21.48

Table 2. Baboon image PSNR for Gaussian (variance 0.05) and
different impulsive noise densities.

Baboon image PSNR

Noise density

30% 40% 50% 60% 70% 80%

Grad. 19.14 19.09 18.81 18.48 18.47 18.37

Mixed 19.14 19.08 18.74 18.48 18.35 18.32

Biharm. 18.89 18.71 18.47 18.12 17.84 17.83

Figure 1. Lena image (a) and Baboon image (b).

Figure 2. Noisy Lena image (r2 ¼ 0:05, 60% salt and pepper noise density) (a), recovered image using gradient penalty spline (b),
recovered image using mixed derivative spline (c), recovered image using Laplacian spline (d).
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the images corrupted with Gaussian noise with vari-

ance 0.05, and impulsive noise of density 60%. In the

first image of Figure 2, we show the noisy Lena image.

The next three images show the reconstructed images

obtained by the three splines. The results for the

Baboon image are shown in Figure 3.
We will now show the PSNR for the reconstructed

images in Tables 1 to 4.
Note that we have chosen our parameter k using

generalised cross validation17 and the stochastic trace

estimator proposed by Hutchinson.18 We note that this

gives a good estimate of the optimal parameter. In

Figure 4 we have plotted the PSNR and the generalised

cross validation function versus k. Note that the vali-

dation function has been scaled for visualisation pur-

poses. For both plots, the Lena image has been

corrupted with Gaussian noise with variance 0.05,

and has been recovered with the mixed derivative

spline. In the left plot, the image has been corrupted

with impulsive noise of density 30% while in the right

plot the density is 40%.

Binary image

We will now apply the same methods to a binary test

image (see Figure 5). As an example, consider the

image is corrupted with Gaussian noise of variance

0.05, and impulsive noise of density 60%. We show

the noisy image and the reconstructed images in
Figure 6.

We will now show the PSNR for the reconstructed
image in Tables 5 and 6.

Table 3. Lena image PSNR for Gaussian (variance 0.1) and dif-
ferent impulsive noise densities.

Lena image PSNR

Noise density

30% 40% 50% 60% 70% 80%

Grad. 21.45 21.40 20.81 20.34 20.21 19.82

Mixed 21.77 21.69 20.80 20.44 20.21 19.85

Biharm. 22.20 22.09 21.56 21.10 20.48 20.14

Table 4. Baboon image PSNR for Gaussian (variance 0.1) and
different impulsive noise densities.

Baboon image PSNR

Noise density

30% 40% 50% 60% 70% 80%

Grad. 18.24 18.20 17.93 18.09 17.89 17.65

Mixed 18.18 18.17 17.89 18.06 17.86 17.56

Biharm. 18.06 17.85 17.66 17.54 17.40 17.06
2 2.5 3 3.5 4 4.5 5

21.9

21.95

22

22.05

22.1

22.15

22.2

22.25

22.3

22.35

validation function
PSNR

2 2.5 3 3.5 4 4.5 5
22

22.05

22.1

22.15

22.2

22.25

22.3

22.35

validation function
PSNR

(a)

(b)

Figure 4. Generalised cross validation function and PSNR
versus k for Gaussian noise with variance 0.05 and impulsive
noise with densities 30% (a) and 40% (b).
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Continuous functions

We would now like to recover continuous functions.
We define a tensor product partition T h of the square
½�1; 1� 	 ½�1; 1� using the set of points

N h ¼ ðai; bjÞ
	 
n;m

i¼1;j¼1
;

where ai ¼
2ði� 1Þ
n� 1

� 1; and bj ¼
2ðj� 1Þ
m� 1

� 1

We sample the function value at each point in the

partition, and then apply Gaussian noise of variance

0.05. We then refine the partition several times, which

halves the mesh size h in each iteration. We will now

consider the first test function. Let the function f be

given by fðx; yÞ ¼ sinð3xÞe�x2�y2 over the domain

½�1; 1� 	 ½�1; 1� (see Figure 7).
We compare the PSNR values for the recovered

function and the original function for different steps

of refinement in Table 7, where the refinement step is

given by the step-size h.
We can see that PSNR values do not increase or

decrease for the spline with the mixed derivative pen-

alty and the spline with the Laplacian penalty, whereas

the PSNR values decrease for the spline with the gra-

dient penalty. This is due to the fact that the stability

constant depends on the mesh-size h for the spline with

the gradient penalty.
We show the functions recovered after the fifth iter-

ation in Figure 7. We can see that gradient penalty

spline produces a recovered function that overfits the

noisy data. On the other hand, both the mixed deriva-

tive and the Laplacian splines produce smoother recov-

ered functions.
We want to see the effect of the mesh-size on

the spurious spikes of the recovered function.

In Figure 8, we show the functions recovered using

the gradient penalty spline using the coarser

mesh-sizes h¼ 2/19 and h¼ 1/19. These pictures

Figure 5. Binary image.

Figure 6. Noisy binary image (r2 ¼ 0:05, 60% salt and pepper
noise density) (a), recovered image using gradient penalty spline
(b), recovered image using mixed derivative spline (c), recovered
image using Laplacian spline (d).

Table 5. Binary image PSNR for Gaussian (variance 0.05) and
different impulsive noise densities.

Binary image PSNR

Noise density

30% 40% 50% 60% 70% 80%

Grad. 14.77 14.66 14.37 14.19 13.77 13.47

Mixed 15.37 15.21 15.03 14.84 14.43 14.00

Biharm. 15.17 14.93 14.86 14.49 14.39 13.72

Table 6. Binary image PSNR for Gaussian (variance 0.1) and
different impulsive noise densities.

Binary image PSNR

Noise density

30% 40% 50% 60% 70% 80%

Grad. 13.24 13.05 13.01 12.61 12.49 12.20

Mixed 13.58 13.38 13.27 13.03 12.86 12.50

Biharm. 13.36 13.10 12.23 12.88 12.89 12.56
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show that the spurious spikes are still present
although the spikes are slightly smaller in the coarser
mesh results.

We will now provide a second test function. Let the
function g be given by gðx; yÞ ¼ �x2 � xy2 over the
domain ½�1; 1� 	 ½�1; 1� (see Figure 9). We have tabu-
lated the PSNR values for different splines at different
levels of refinement in Table 8. The results are similar
to the first example but the spurious spikes of the
recovered function using the gradient penalty

formulation have not affected the PSNR values much

in this example.
We show the functions recovered after the fifth iter-

ation in Figure 9. Again, we see that the gradient pen-

alty spline overfits the data.

Discussion

We compared three different bivariate L-spline

approaches for removing the mixture of Gaussian

and impulsive noise from images. We found that for

the Lena image, the Laplacian penalty produced recov-

ered images with the best PSNR. However, we found

that the Laplacian penalty performed the worst when

recovering the Baboon image. The gradient and mixed

derivative penalties performed very similarly to each

other when recovering the two real life images. For

the Binary image, we found that the mixed derivative

penalty performed the best, followed by the Laplacian

penalty and then the gradient penalty.

Table 7. PSNR for f using different penalty terms.

i h Grad. Mixed Bihar.

0 2/19 19.85 24.31 25.54

1 1/19 20.01 24.48 26.44

2 1/38 19.59 24.61 26.61

3 1/76 19.16 24.67 26.69

4 1/152 18.51 24.70 26.72

5 1/304 17.95 24.71 26.73

Figure 7. f ðx; yÞ ¼ sinð3xÞe�x2�y2 restricted to ½�1; 1� 	 ½�1; 1� (a), function recovered using gradient penalty spline (b), function
recovered using mixed derivative spline (c), function recovered using Laplacian spline (d).
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Figure 8. Function recovered using gradient penalty spline with h¼ 2/19 (a), function recovered using gradient penalty spline with
h¼ 1/19 (b).

Figure 9. gðx; yÞ ¼ �x2 � xy2 restricted to ½�1; 1� 	 ½�1; 1� (a), function recovered using gradient penalty spline (b), function
recovered using mixed derivative spline (c), function recovered using Laplacian spline (d).
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We then applied the same approaches to recover two
continuous functions from a set of noisy observations.
We found that for both functions, the Laplacian penalty
produced the best recovered functions, closely followed
by the mixed derivative penalty. The gradient penalty
produced recovered functions that overfitted the data.

The overfitting occurred because the gradient penal-
ty formulation is not well-posed in the continuous set-
ting. For dimensions d � 2, we have that
H1ðXÞ 6� C0ðXÞ (by the Sobolev embedding theorem).
This ill-posedness exhibits itself when the mesh size
goes to zero.19 The other formulations, however, are
well-posed in the continuous setting. This is because
H1

mðXÞ � C0ðXÞ for any dimension d,16 and H2ðXÞ �
C0ðXÞ for dimensions d � 3.

Overall, the gradient penalty was the simplest spline
to implement and the most computationally efficient.
However, as this is not well-posed for d> 1, it often
produces spurious results. The computational cost of
the spline with the mixed derivative penalty is very
close to the gradient penalty and this is well-posed for
all dimensions.11 The Laplacian penalty was the least
simple to implement, and was the least computationally
efficient. Moreover, the spline with the Laplacian pen-
alty is also not well-posed when d> 3. Therefore, we
find that the spline with the mixed derivative penalty
is the best choice among the presented three splines.
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